
MODIS
SCIENCE DATA SUPPORT TEAM

PRESENTATION

March 27, 1992

4GENDA

Page

Action Items .,......1

MODIS Airborne Simulator (MAS) Status .2

lntergraph Visit ...4

MODIS SDSTDeliverables ...5

Guidelines for TMS ...6

ACTION ITEMS:

01/03/92 [Team]: Check on the set of software engineering tools
available in Code 530 to see if any of these would be of use to
the SDST. (Arrangements are being made to have Frank McGarry
come to one of the MODIS SDST meetings and talk about the tools
they use and would recommend. This will have to occur after the
science team meeting because of Frank McGarry’s schedule.)
STATUS : Open. Due date 02/14/92.

01/17/92 [Tom Goff]: Have a polished version (with peer review)
of the file dump routine ready for the MODIS Science Team
Meeting. (Copies of the finished version together with RDC
internal review comments were given to Ed Masuoka to pass on to
Will Webster for use by the SDST software review committee.)
STATUS : Open. Due date 04/01/92.

02/21/92 [Ed Masuoka]: Talk to Code 930 and find out what tools
they have for porting data between computers from different
vendors. (Ed says the U-Lab is purchasing QA Fortran and QA C.
He will talk to Bill Mish about data conversion.) STATUS : Open.
Due date 03/13/92.

02/21/92 [Lloyd Carpenter and Team]: Identify a list of risks
associated with porting Team Members’ algorithms to the PGS.
Prepare these for discussion at the Science Team Meeting.
STATUS : Open. Due date 04/01/92.

03/20/92 [Liam Gumley]: Make a list of candidate algorithms to
use MAS data (to be discussed at the Science Team meeting) .
Start with the atmospheres group. (See report in handout.)
STATUS : Open. Due date 03/27/92.

03/20/92 [Tom Goff]: Ensure that every problem identified in
porting Mike King’s code is addressed in the Team Member coding
guidelines. (See draft version of guidelines in handout.)
STATUS : Open. Due date 03/27/92.

03/20/92 [Lloyd Carpenter]: Gather the MODIS Data Product
Attributes information, and write a cover letter to Team Members
for updating the information, and discussion at the Team Meeting.
(Cover letter written and delivered.) STATUS: Open. Due date
03/27/92.

MOD] S SDST MOD1S\M1NUTES\ACT92-03.27
March 27, 1992 Handout

MODIS Airborne Simulator status (Liam Gumlevj

Progress upto26 March 1992

(1) MAS data processing status

Flight Area covered Level-O data Processing INS offset
Date during fli~ht received comDleted fixed

10/31/91 Ames test flight CA/NV yes 3/3 tracks yes
11/12/91 Ferry flight CA to TX yes (subset) 1/1 tracks no
11/14/91 Coffeyville KS yes 16/16 tracks no
11/18/91 Coffeyville KS yes 14/14 tracks yes
11/21/91 Coffeyville KS yes
11/22/9 1 Coffeyville KS yes
11/24/91 Gulf coast TX/LA yes
11/25/91 Coffeyville KS yes
11/26/91 Coffeyville KS yes
12/03/91 Gulf coast TX/LA yes
12/04/9 1 Gulf coast TX/LA yes
12/05/91 Coffeyville KS yes 29/29 tracks no
12/07/91 Coffeyville KS yes

11/16/91 Ground visible calibration yes 10481 scanlines (no navigation)
11/20/9 1 Ground visible calibration yes 6078 scanlines (no navigation)
11/23/91 Ground visible calibration yes 10281 scanlines (no navigation)

Processing was delayed to some extent by a problem with the NFS link from the LTP Iris to
the VAX. The problem was resolved on Wednesday. While the NFS link was down,
processing could only take place on the VAX. This prompted me to move a complete up-to-
date set of processing code from the Iris to the VAX and recompile and test all programs. The
VAX was used to produce 2 of the 14 flight tracks from 18 November 1991. The output data
produced is normal in all respects, even though the VAX is still slow compared to the Iris
(around 7 hours processing on the VAX versus 1 hour on the Ins).

(2) Candidate algorithms from the MODIS Atmospheres Group for use with MAS data

I spoke to several members of the MODIS Atmospheres Group and asked them what
algorithms they were using, or were planning to use with the MAS data.

Mike King reported that his main processing algorithm was contained in the Cloud Optical
Depth (CLDOPT) code. The code is currently executing on a CRAY UNICOS system, and
was being updated/modified/beautified in order to work with MAS data. Si Ch~ Tsay is
working on this code, and it is expected that a version suitable for porting will be ready
sometime in May. It was also suggested that noise filtering/removal would form a part of
future algorithm development.

Paul Menzel was unavailable for discussion before 03/27/92. I spoke to Chris Moeller who
works with Paul at Wisconsin. There are several pmple working on algorithm and code
development for MAS data. They do have code running currently for several tasks, but most
of the code is still under development. A critical aspect is that the MAS will have appropriate
spectral channels for some algorithms for the first time in the ASTEX deployment (June ‘92).

Although algorithms and code are still under development, Chris did not think there would be
a problem in providing a version for our prototyping purposes.

Yoram Kaufman and Didier Tanr& are chiefly responsible for aerosol algorithms for MODIS.
Yoram does intend to eventually use data from MAS for aerosol, water vapor, and fire
detection algorithm development. He expects the first MAS data applicable to this task will be
from the Brazil biomass burning field experiment in August 1993. T’here are several possible
algorithms available for estimation of theses parameters, however no code exists at the moment
that could be applied to MAS data directly. However it should be noted that his algorithms
will directly use algorithms from radiative transfer codes such as LOWTRAN7 and 5S/6S.
These codes perform the bulk of the ‘science’ algorithm computation, and the remaining code
would perform functions like datafile manipulation, equation solution/inversion etc.

The following is a list of parameters to be derived from MODIS (King et. al., 1992) by the
Atmosphere Group, and which could also be used for MAS data.

Parameter

Cloti properties

Optical Thickness
Eff-tive radius
Thermodynamic phase
Cloud top pressure
Cloud top temperature
Effmtive emissivity
Cloud fraction

Aerosol propenies (land)

Optical thickness
Effmtive radius
Single scattering albedo
Mass loading

Aerosol properiics (water)

Optical thickness
Size distribution
Mass loading

Water vapor properties

Responsible Investigator

King
King, Menzel
King
Menzel
Menzel
Menzel
King

Kaufman, Tanr&
Kaufman, Tanr6
Kaufman, Tanr6
Kaufman, Tanr4

Kaufman, Tanr6
Kaufman, Tanr6
Kaufman, Tanr6

Pr~ipitable water vapor (land) Kaufman, Tanr6
Precipitable water vapor (water) Menzel
Atmospheric stability Menzel

All of these parameters are retrievable from MAS, given the appropriate spectral channels.
Some of them rquire ancillary data such as temperature profiles, radiative transfer
computation results etc.

Reference: M.D. King, Y.J. Kaufman, W.P. Menzel, D. Tanr&, “Remote Sensing of Cloud,
Aerosol, and Water Vapor Properties from the Moderate Resolution Imaging Spectrometer
(MODIS)”, IEEE Tram. Geosci. Remote Scming, vol. 30, pp 2-27, 1992.

Visit to Intergraph Corporation
25 March 1992

Representatives horn the MODIS SDST visited the Intergraph Federal Systems Division in Virginia
to obtain a better understanding of the capabilities of the Intergraph work stations as might be
applied to the registration and rectification tasks for ground locating the MODIS instrument data.
We were treated to three presentations consisting of an Intergraph corporate overview, a
demonstration of their display work station, and a slide show of intellectual capabilities. The demo
allow several questions to be asked and the presentations were followed by an informal discussion
of the MODIS task.

The demo was performed on one of their 27”, 1660x1 280 32bit color systems. These systems use
the Intergraph Clipper computer architecture (ex Fairchild) with Vitek graphics boards. This system
started as a full featured GIS system to which remote imaging has been added. The software
remote sensing capabilities are derived primarily from the use of commercial Landsat and Spot
imagery. These images are used to correct GIS data and to provide type classification as an adjunct
to the normal GIS functions. Their system incorporates a very capable interactive ground
registration technique utilizing statistical indications for goodness of fit and several resampling
techniques to warp the image data either to other images or to GIS vectors. We did not see any
indication of the use of mapping projections or satellite ephemeris capabilities, although the glossy
brochure mentions a mapping projection interchange package.

We discussed the MODIS problems of having a variable IFOV coverage and a variable IFOV
overlap to the resident personnel. They volunteered that there were company employees in
Huntsville that are familiar with these concerns and gave us a name to contact for further
information. They also provided us with a contact with a company in St. Louis that has had
considerable experience in correcting satellite ephemeris data from remotely sensed ground scenes
by incorporating DEM models and back solving.

This system reportedly supports open system standards but they were not currently running X-
windows or other open systems software. They have published their database standards and details
to allow user to write interfaces to this database. They also mentioned that users could write their
own modules that can be interfaced into the Intergraph system. The software used in the demo
(Microsystems?) has been partially ported to PC’s, Macintoshes, and other UNIX operating systems.

Although this system with it’s large monitor and true 3-D graphics would be a nice present from
Santa Claus, it currently does not have a sufficiently complete suite of software tools, for our use
as MODIS investigators, to justify it’s $100.000 price tag.

DRAFT

1

2

3

4

5

6

7

8

9

10

11

MODIS SDST Deliverables

MODIS SDST Schedule

MODIS Software and Data Management Plan

MODIS Team Leader Computing Facility Plan

Guidelines for MODIS Team Members Science Algorithms

MODIS Airborne Simulator (MAS)

5.1 Version 1 Software
5.2 Data Users Guide
5.3 Data Catalog
5.4 Version 1 Metadata
5.5 Level-1 Processed Data
5.6 Prototype Level-2 Algorithm List

MODIS Level-1 Software Development Plan

MODIS Level-lA Design

MODIS Level-lB Design

MODIS Control Shell Development plan

MODIS SDST Training Plan

MODIS SDST Project Plan

MODIS SDST MODIS\PLAhIS\DELIVERA.BLE
March 26, 1992

DRAFT

MODIS Science Data Support Team (SDST)

Guidelines for MODIS Team Members Science Algorithms

MODIS SDST MOD IS\PLANS \GUIDELIN. ES
March 26, 1992

DRAFT

Table of Contents

1 Introduction
1.1 Object ice
1.2 Languages/Operating System
1.3 Programming Style ; .-.

2 Readability/Documentation .
2.1 Documentation
2.2 Declarations
2.3 Variable Names
2.4 Structure
2.5 Modularity/Cohesiveness

3 Portability

.

.

.

.

.

.

.

.
3.1 Language/Operating System
3.2 Binary Data

4 Testability
4.1 Module Testing
4.2 Test Drivers

5 Maintainability

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Appendix A: Soft~?are Code Evaluation Criteria

References:

ii

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1
1
1
1

2
2
3
3
3
3

4
4
4

4
4
5

5

A-1

R-1

MOD IS\PLANS \GUIDELIN. ES
March 26, 1992

7

1 Introduction

This is the first draft version of the guidelines for MODIS Team
Members science algorithms. The current schedule calls for the
next update in January 1993. The B version is scheduled for July
1993, Version 1 and Version 2 are scheduled for July of 1994 and
1995 respectively. Corrections and suggested changes are welcome
at any time.

1.1 Objective

The objective of these guidelines is to facilitate the porting,
integration, testing, documentation, and maintenance of
algorithms for the generation of MODIS science data products on
an operational basis. The MODIS Science Data Support Team (SDST)
will generate a MODIS Software and Data Management Plan which
will address the development, validation, integration,
Operational testing, documentation, maintenance, modification,
and configuration management of the MODIS science data processing
algorithms. These guidelines are designed to assist the MODIS
Science Team Members in preparing their algorithms for this
process.

1.2 Languages/OperatingSystem

All MODIS science data processing algorithms to be ported to the
MODIS Team Leader Computing Facility (TLCF) and integrated into
the control shell with other algorithms will be written in either
Standard Fortran or Standard C programming language, without
extensions. Any exceptions should be brought to the attention of
the MODIS Team Leader and coordinated with the SDST. The EOS
Product Generation System (PGS) and the MODIS TLCF are planned to
conform to the Portable Operating System Interface for UNIX
(POSIX) and the Government Open Systems Interconnections Profile
(GOSIP).

1.3 Programming Style

The primary goal of these guidelines is to facilitate the
porting, integration, testing, documentation, and maintenance of
algorithms for the generation of MODIS science data products on
an operational basis. These guidelines must be consistent with

MODIS SDST MODIS\PLANS\GUIDELIN.ES

1
March 26, 1992

DRAFT

accepted good coding practices, but they are not intended to go
beyond the present purpose. Choice of programming style,
computational methods, etc. is left to the Science Team Members.

2 Readability/Documentation

Efficient porting, integration, testing, documentation, and
maintenance of algorithms depends heavily on being able to read
and understand the code (including the documentation) . The code
must be written and documented so as to be read, understood, and
used by another knowledgeable person or group of people in a
different environment. Readability, or understandability, is the
most important criterion for successful implementation of MODIS
algorithms.

2.1 Documentation

Proper software documentation covers a wide range of topics
including theory, programmer’s guide, user’s guide, etc. While
all available algorithm documentation should be provided to the
SDST , the present focus is on internal documentation of source
code.

Comments are interspersed throughout a module, whereas
documentation occurs at the beginning of a module. Documentation
is specific, and it should be revised to reflect changes.
Completeness and readability, not brevity, are the main
considerations. For each algorithm module the documentation
should, at a minimum, consist of:

● a standard prologue,

. purpose of the module

. definition, description and units of the input, output and
internal variables

. method used, if applicable

● references to the literature

. notes and warnings (conscious design limitations) ,

Input variables should be given thorough and complete

MODIS SDST MOD IS\PLAKS\GUIDELIN. ES
March 26, 1992

2

9

DRAFT

definitions and descriptions. Units, type, dimensions, special
cases, upper and lower limits, usage examples, default values,
and interrelations with other input variables should all be
provided.

2.2 Declarations

Declarations and data statements should be placed just before the
first executable statement of the module.

2.3 Variable Names

All variable names should be meaningful to the knowledgeable
reader. Avoid the use of short, cryptic variable names. Also
avoid the use of language keywords in variable names.

2.4 Structure

The code should be adequately and logically blocked, commented
and indented to clearly show the structure and logical flow.
Comments should be uniformly set-off from the code. All
transfers of control and destinations should be clearly
annotated. A path must be defined for every possible outcome of
a logical decision. The level of nesting should be kept to a
minimum. Statement labels (if used) should occur in a clear and
natural sequence. There should be only one statement per line.

2.5 Modularity/Cohesiveness

Complex algorithms can generally be separated in a logical way
into modules (subprograms) each of which does a single task.
When each module is cohesive, and the coupling between modules is
loose, the algorithm becomes more understandable, more testable,
more maintainable, and more easily documented. The aim is to
achieve a level of modularity which keeps the individual modules
cohesive and comprehensible while avoiding the clutter of too
many relatively trivial modules. Avoid combining several
functions together arbitrarily. Modules should generally be
limited in length to 1 or 2 pages.

MODIS SDST

3

MOD IS\PLAN S\ GUI DE LIN. ES
March 26, 1992

10

3 Portability

Portability is of primary concern in the case of MODIS science
algorithms which are developed in one environment and implemented
for production processing in a different environment. The degree
of concern increases with the degree of difference between the
two environments.

3.1 Language/OperatingSystem

The best guideline to achieve portability is to adhere to
standard FORTRAN or C, and avoid the use of system-dependent
features.

Many portability problems associated with code developed on a
non-UNIX operating system are best avoided by specifying a small
set of primitive operations for accessing the environment.
Operating system dependencies are then confined to a small number
of procedures and functions, so the algorithm can be moved to a
UNIX system where the primitives can be implemented.

3.2 Binary Data

Special care must be taken to avoid problems associated with
porting binary data. Mixing floating point numbers with integers
in a single array is especially troublesome, especially when
porting to a machine which does not support the same bit lengths.
Another concern is the change in roundoff arising from
differences in the bit-length of floating point arithmetic in
different computers.

4 Testability

All test data and test results must be included with the delivery
of the algorithm and documentation to the SDST. The porting and
integration process is not complete until the algorithm has been
successfully tested on the TLCF. These tests must give results
which are consistent with testing done prior to delivery to the
SDST.

4.1 Module Testing

MODIS SDST MOD IS\PLANS \GUIDELIN. ES
March 26, 1992

4

Each module should be tested independently of the total
algorithm. The test should include exercising every logical
branch in each module, checking for possible failure, checking
for reasonableness of results, comparison of limiting cases with
analytic solutions, comparison with published results where
possible. Tests should also include cases of invalid or
implausible input variables, no matter how unlikely it is that
the module will be used incorrectly. In the code, each error
message should be kept together with its associated error check.

4.2 Test Drivers

Comprehensive test drivers explore all of the branches of an
algorithm and compare results with “correct answers” which are
included in the driver code. A good test driver will also
“failure-test” the model by pushing it into regimes where trouble
is expected. Good test drivers, developed with good coding
practices, are very helpful in porting, integrating, and
maintaining algorithms. Test drivers are not required for MODIS
science algorithms, but they are recommended, and they should be
supplied to the SDST when available.

5 Maintainability

Considering the duration of the MODIS mission, all algorithms
will be subject to maintenance (changes, and updating) . The
maintenance process will be greatly simplified if the guidelines
addressed elsewhere in this document are applied in the design
and development of algorithms.

MODIS SDST

5

MOD IS\PLAN S\GUI DE LIN. ES
March 26, 1992

12

Appendix A: Software Code Evaluation Criteria

This list of software code evaluation criteria is provided as a
suggested checklist for code review. Some of the items apply to
more than one category.

Readability/ Documentation

Does each module have the standard prologue?

Are definitions, descriptions and units given for all
variables?

Are declarations and data statements placed after the
prologue and before the first executable statement?

Are variable names meaningful?

Do variable names avoid the use of language keywords?

Has structured programming been utilized?

Is the code logically and adequately commented, blocked and
indented to show structure?

Are comments uniformly set-off from code?

Are all transfers of control and destinations annotated?

Is a path
decision?

defined for every possible outcome of a logical

Is the level of nesting kept to a minimum?

If statement labels are used, do they occur in a clear and
natural sequence?

Is there only one statement per line?

Is the program divided into cohesive and comprehensible
modules of reasonable size?

MODIS SDST

A-1

MOD IS\PLANS \GUIDELIN. ES
March 26, 1992

Portability

Is the software written in Standard FORTRAN or Standard C
without extensions?

Are operating system dependencies limited to a small set of
primitive operations?

Are mixed binary arrays of fixed and floating point numbers
avoided?

Testability

Are test data and test results provided with the algorithm?

Are limit checks performed to ensure that variable contents
are within the expected range of values?

Are input defaults explicitly tested?

Are errors and associated error messages kept together?

Other Criteria

Callinq subroutines

Do arguments in call statements not contain arithmetic or
logical expressions?

Does each module contain a single entry point and a single
exit point?

Are shared variables communicated as arguments whenever
practical to ensure program modularity? (Minimize the use
of COMMON and EQUIVALENCE.)

Error handlinq and prevention

Are flagged/missing data values correctly excluded from
calculations?

Is the code designed to handle errors and failures
gracefully?

MODIS SDST
MOD IS\ PLANS \GUIDELIN. ES

March 26, 1992A-2

DRAFT

Are possibilities for infinite loops avoided?

Are stack overflow problems avoided?

Variables, constants & Parameters

Are constants defined? Are counters, variables and
parameters initialized?

Are local variables within modules declared as static (type)
where appropriate?

Are loop index parameters and array subscripts expressed
only as integer constants or integer variables?

MODIS SDST

A-3

MOD IS\PLAN S\GUI OELIN. ES
March 26, 1992

15

References:

Warren J. Wiscombe, “Principles of Numerical Modeling with
Examples from Atmospheric Radiation’! 1989, unpublished.

Upper Atmosphere Research Satellite Software Assurance
Recommendations Document, Version 3.0, NASA\GSFC, July 1989

MODIS SDST

R-1

MOD IS\PLANS\ GUI DE LIM. ES
March 26, 1992

16

